АЛГЕБРА

СПРАВОЧНИК ДЛЯ УЧАЩИХСЯ

Мозырь «Выснова» 2020

МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ

Числа и вычисления

Числа, которые мы используем при счете, называются **натуральными числами**. Множество натуральных чисел обозначается буквой N. Число нуль не является натуральным, следовательно, наименьшим натуральным числом является число 1. Наибольшего натурального числа не существует.

Наибольшим общим делителем (НОД) натуральных чисел называется наибольшее число, на которое делятся все данные числа.

Алгоритм нахождения НОД:

- 1. Разложить числа на простые множители.
- 2. Найти произведение общих простых множителей, взяв каждый из них с наименьшим показателем.

Например, необходимо найти НОД чисел 36 и 28.

- 1. Разложим числа на простые множители: $36 = 2 \cdot 2 \cdot 3 \cdot 3$; $28 = 2 \cdot 2 \cdot 7$.
 - 2. Находим произведение общих простых множителей: $2 \cdot 2 = 4$.

Наименьшим общим кратным (НОК) натуральных чисел называется наименьшее натуральное число, которое делится на эти числа.

Алгоритм нахождения НОК:

- 1. Разложить числа на простые множители.
- 2. Найти произведение всех получившихся простых множителей, взяв каждый из них с наибольшим показателем.

Например, необходимо найти НОК чисел 36 и 28.

- 1. Разложим числа на простые множители: $36 = 2 \cdot 2 \cdot 3 \cdot 3$; $28 = 2 \cdot 2 \cdot 7$.
- 2. Находим произведение всех получившихся простых множителей: $2 \cdot 2 \cdot 3 \cdot 3 \cdot 7 = 252$

Пропорцией называется равенство двух отношений вида: $\frac{a}{b} = \frac{c}{d}$ или a:b=c:d, где $b\neq 0,\ d\neq 0$. Числа a и d называются *крайними членами* пропорции, а числа b и c — cpedними членами пропорции.

Основное свойство пропорции — произведение крайних членов пропорции равно произведению средних членов пропорции.

Например,
$$\frac{4}{5} = \frac{8}{10}$$
, проверим: $4 \cdot 10 = 5 \cdot 8$, $40 = 40$.

Запишем пропорцию в другом виде: 2:3=6:9, проверим: $2\cdot 9=3\cdot 6$, 18=18.

Процентом называется сотая часть числа и обозначается %.

Например,
$$1\% = \frac{1}{100}$$
; $5\% = \frac{5}{100} = \frac{1}{20}$.

Типы задач на проценты:

1. Нахождение процентов данного числа — чтобы найти некоторое число процентов данного числа (процент от числа), нужно данное число разделить на 100 и умножить на число процентов.

Например, необходимо найти, сколько составляют 20% от числа 300.

Для этого нужно 300:100=3 и $3\cdot 20=60$.

Ответ: 60 составляет 20% от числа 300.

2. Нахождение числа по данным его процента (число по его проценту) — чтобы найти число по данной величине его процентов, нужно эту величину разделить на число процентов и умножить на 100.

Например, необходимо найти число, зная, что 30% его составляют 15.

Для этого нужно 15:30=0.5 и $0.5\cdot100=50$.

Ответ: 15 составляет 30% от числа 50.

3. Нахождение количества процентов одного числа от другого — чтобы найти процентное отношение одного числа к другому, нужно первое число разделить на второе и результат умножить на 100.

Например, необходимо найти, какой процент составляет число 30 от числа 240.

Для этого нужно 30:240=0,125 и $0,125\cdot100=12,5\%$.

Модулем числа a называется само это число, если оно неотрицательно, и противоположное ему число, если оно отрицательно:

$$|a| = \begin{cases} \frac{a, & \text{если } a \ge 0, \\ -a, & \text{если } a \le 0. \end{cases}$$

Геометрически модуль числа a показывает расстояние, т. е. длину отрезка числовой оси от нуля до точки с координатой a.

Таблица квадратов натуральных чисел

Единицы Десятки	0	1	2	3	4	5	6	7	8	9
1	100	121	144	169	196	225	256	289	324	361
2	400	441	484	529	576	625	676	729	784	841
3	900	961	1024	1089	1156	1225	1296	1369	1444	1521
4	1600	1681	1764	1849	1936	2025	2116	2209	2304	2401
5	2500	2601	2704	2809	2916	3025	3136	3249	3364	3481
6	3600	3721	3844	3969	4096	4225	4356	4489	4624	4761
7	4900	5041	5184	5329	5476	5625	5776	5929	6084	6241
8	6400	6561	6724	6889	7056	7225	7396	7569	7744	7921
9	8100	8281	8464	8649	8836	9025	9616	9409	9604	9801

Действия с дробями

- 1. Сложение дробей с одинаковыми знаменателями: $\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$. $Hanpumep, \ \frac{1}{3} + \frac{2}{3} = \frac{1+2}{3} = \frac{3}{3} = 1$.
- 2. Сложение дробей с разными знаменателями: $\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd}$. Hanpumep, $\frac{1}{3} + \frac{2}{5} = \frac{1 \cdot 5 + 2 \cdot 3}{3 \cdot 5} = \frac{5+6}{15} = \frac{11}{15}$.
- 3. Вычитание дробей с одинаковыми знаменателями: $\frac{a}{b} \frac{c}{b} = \frac{a-c}{b}$. $Hanpumep, \ \frac{5}{7} - \frac{3}{7} = \frac{5-3}{7} = \frac{2}{7}$.
- 4. Вычитание дробей с разными знаменателями: $\frac{a}{b} \frac{c}{d} = \frac{ad cb}{bd}$.

Hanpumep,
$$\frac{7}{8} - \frac{5}{6} = \frac{7 \cdot 6 - 5 \cdot 8}{6 \cdot 8} = \frac{42 - 40}{48} = \frac{2}{48} = \frac{1}{24}$$
.

5. Умножение дробей: $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$.

Hanpumep,
$$\frac{2}{3} \cdot \frac{4}{5} = \frac{2 \cdot 4}{3 \cdot 5} = \frac{8}{15}$$
.

6. Деление дробей:
$$\frac{a}{b} : \frac{c}{d} = \frac{a \cdot d}{b \cdot c}$$
.

Hanpumep,
$$\frac{5}{8}: \frac{3}{7} = \frac{5}{8} \cdot \frac{7}{3} = \frac{5 \cdot 7}{8 \cdot 3} = \frac{35}{24} = 1\frac{11}{24}$$
.

Из двух дробей с равными знаменателями больше та, у которой числитель больше $\frac{a}{c} > \frac{b}{c}$, если a > b.

Например,
$$\frac{6}{11} > \frac{3}{11}$$
, т. к. $6 > 3$.

Из двух дробей с одинаковыми числителями больше та, у которой знаменатель меньше $\frac{a}{b} > \frac{a}{c}$, если b < c.

Например,
$$\frac{3}{8} < \frac{3}{5}$$
, т. к. $5 < 8$.

Формулы сокращенного умножения

1.
$$a^2 - b^2 = (a - b)(a + b)$$

2.
$$(a-b)^2 = (a^2 - 2ab + b^2)$$

3.
$$(a+b)^2 = (a^2 + 2ab + b^2)$$

4.
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3 = a^3 - b^3 - 3ab(a-b)$$

5.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 = a^3 + b^3 + 3ab(a+b)$$

6.
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

7.
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

ПОЛЕЗНО ЗНАТЬ

Таблица значений тригонометрических функций основных углов

	0°	30°	45°	60°	90°	180°
$\sin \alpha$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
cosα	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
tgα	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	Не существует	0
$ctg\alpha$	He существует	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0	Не существует

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
 $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$; $\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$ $\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = 1$

Формулы приведения

$\sin(180^\circ - \alpha) = \sin \alpha$	$\sin(90^{\circ} - \alpha) = \cos \alpha$
$\cos(180^{\circ} - \alpha) = -\cos\alpha$	$\cos(90^{\circ} - \alpha) = \sin \alpha$
$tg(180^{\circ} - \alpha) = -tg \alpha$	$tg(90^{\circ} - \alpha) = ctg \alpha$
$ctg(180^{\circ} - \alpha) = -ctg \alpha$	$\operatorname{ctg}(90^{\circ} - \alpha) = \operatorname{tg}\alpha$

СОДЕРЖАНИЕ

МАТЕРИАЛ ДЛЯ ПОВТОРЕНИЯ	3
Числа и вычисления	3
Таблица квадратов натуральных чисел	5
Свойства степени с натуральным и целым показателем	7
Свойства квадратных корней	
Свойства арифметического корня	
Свойства числовых неравенств	
Разложение квадратного трехчлена на множители	
РАЦИОНАЛЬНЫЕ ВЫРАЖЕНИЯ	12
Рациональная дробь	
Основное свойство рациональной дроби. Сокращение рацио-	
нальных дробей	12
Сложение и вычитание рациональных дробей	13
Умножение и деление рациональных дробей	14
Преобразование рациональных выражений	15
ФУНКЦИИ	16
Функция числового аргумента. Область определения функции,	
множество значений функции. Способы задания функции	16
Φ ункция $y = f(x)$	16
Свойства функции	17
Четные и нечетные функции	
Построение графиков функций $y = f(x) \pm b$, $y = f(x \pm a)$	20
ДРОБНО-РАЦИОНАЛЬНЫЕ УРАВНЕНИЯ И НЕРАВЕНСТВА	
Дробно-рациональные уравнения	
Системы нелинейных уравнений	
Формула длины отрезка с заданными координатами его концов.	
Уравнение окружности	22
Дробно-рациональные неравенства. Метод интервалов для ре-	
шения рациональных неравенств	22
Числовая последовательность	
Арифметическая прогрессия	
Формула суммы п первых членов арифметической прогрессии	25
Геометрическая прогрессия	
Сумма бесконечно убывающей геометрической прогрессии	26
Таблица значений тригонометрических функций основных углов	
Формулы приведения	27