О. Ч. Мазур

СПРАВОЧНИК

ШКОЛЬНИКА

C305aBHbIMU C305aBHbIMU PUCYHKOMU HQ 17019X

Москва 2021

Макет подготовлен при содействии ООО «Айдиономикс».

Мазур, Оксана Чеславовна.

М13 Наглядная биология / О. Ч. Мазур. — Москва : Эксмо, 2021. — 144 с. : ил. — (Новый справочник школьника с дудлами).

ISBN 978-5-04-109484-3

Справочник содержит сведения по всем темам школьного курса биологии. Весь теоретический материал систематизирован, сопровождается примерами, наглядными схемами и таблицами, а также рисунками на полях (дудлами), которые помогают лучше запомнить полученную информацию.

Пособие предназначено для школьников и учителей, а также для всех, кто интересуется вопросами биологии.

УДК 373.5:57 ББК 28я721

[©] ООО «Айдиономикс», 2020

[©] Оформление. ООО «Издательство «Эксмо», 2021

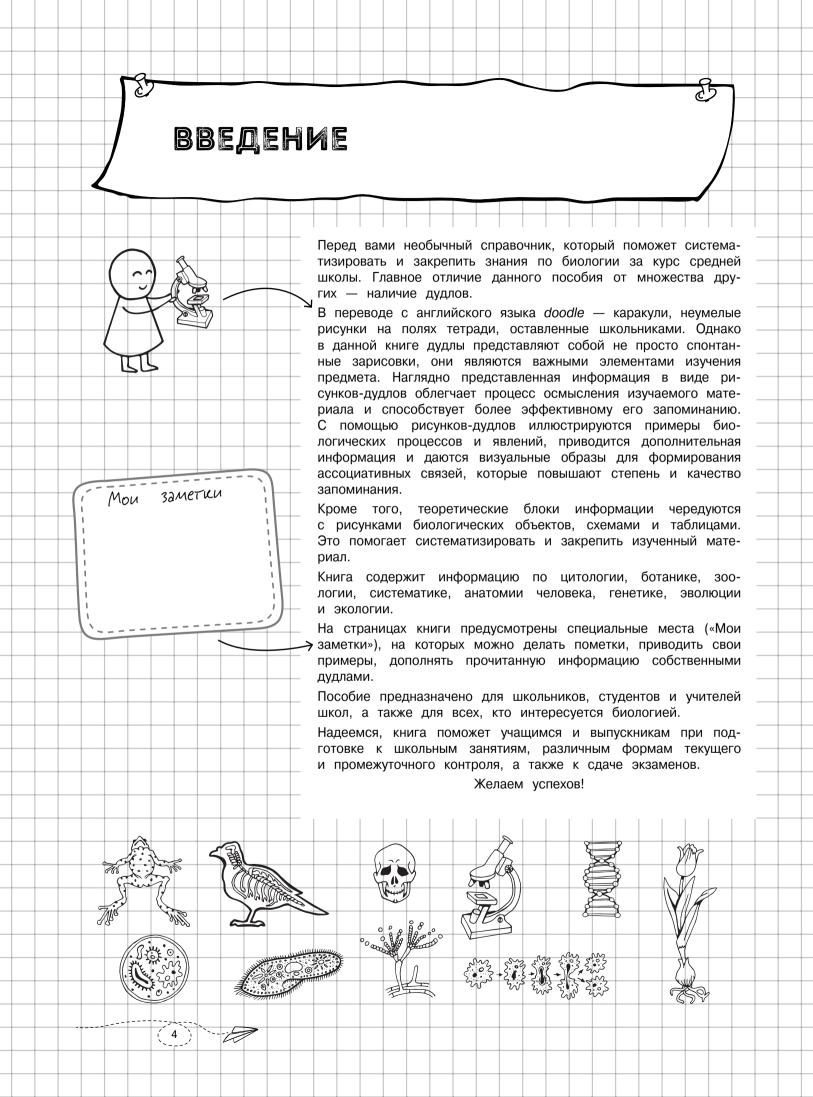
COLEPXAMNE

Введение	4
••	
БИОЛОГИЯ КАК НАУКА Основные понятия. Методы	
Уровневая организация жизни	
КЛЕТКА КАК БИОЛОГИЧЕСКАЯ СИСТЕМА Современная клеточная теория	
Многообразие клеток	
Обмен веществ и превращение энергии	
Хранение наследственной информации	
ОРГАНИЗМ КАК БИОЛОГИЧЕСКАЯ СИСТЕМА	25
Разнообразие организмов	
Воспроизведение организмов	
Онтогенез	29
Генетика	-
Изменчивость организмов	
Селекция	
СИСТЕМА ОРГАНИЧЕСКОГО МИРА	
Основы систематики	
БактерииГрибы	
Растения	
ЦАРСТВО РАСТЕНИЯ	
Отдел Водоросли	
Отдел Мхи	
Отдел Плауны	
Отдел Хвощи	59
Отдел Папоротники	
Отдел Голосеменные	
Отдел Покрытосеменные	63
ЦАРСТВО ЖИВОТНЫЕ	
Тип Кишечнополостные	
Тип Плоские червиТип Круглые черви	
Тип Кольчатые черви	
Тип Моллюски	
Тип Членистоногие	
Тип Хордовые	81
АНАТОМИЯ ЧЕЛОВЕКА	94
Ткани	94
Аппараты и системы органов	97
эволюция живой природы	122
Вид и популяция	122
Развитие эволюционных идей	
Доказательства эволюции живой природы	
Макроэволюция	
Происхождение человека	
ЗАКОНОМЕРНОСТИ ЭКОСИСТЕМЫ	
Экологические факторы	
Экосистема	
+ vpv	

Ж. Б. Ламарк

Ч. Дарвин

Г. Мендель


Т. Морган

Ф. Гальтон

В. И. Вернадский

540000 KAK HAYKA

основные понятия. Методы

Биология — наука о живой природе, изучающая жизнь как особую форму материи, законы её существования и развития. Термин «биология» был предложен в 1802 г. Ж. Б. Ламарком и Г. Р. Тревиранусом независимо друг от друга.

Задачи биологии — познание сущности жизни и закономерностей её проявления.

Метод — путь достижения поставленной цели. В биологии выделяют основные и частные методы.

БИОЛОГИЧЕСКИХ НАУК Виды

по объекту изучения

(3) Бактериология

Ботаника

Микология

Зоология 🎉

Вирусология

Микробиология

по свойствам

Морфология

Анатомия

Генетика

Биохимия

Физиология

Экология

Эмбриология

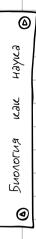
МЕТОДЫ БИОЛОГИИ

ОСНОВНЫЕ МЕТОДЫ

Наблюдение — описание биологического явления.

Эксперимент — целенаправленное исследование в управляемых условиях.

Сравнение — сопоставление объектов, процессов или явлений, нахождение между ними сходств и различий.


Моделирование — изучение объекта, процесса или явления через воспроизведение его в виде модели (образа).

Жизнь — активная форма существования материи, совокупность физических и химических процессов клетки, осуществляющей обмен веществ и деление.

Mou sametku

ЧАСТНЫЕ МЕТОДЫ

Генеалогический — составление родословных людей, выяснение характера наследования признаков.

Палеонтологический — выявление родства между древними организмами.

Цитологический (цитогенетический) — исследование строения клетки, её структур с помощью различных микроскопов.

Центрифугирование — разделение смесей на составные части под действием центробежной силы.

87-

УРОВНЕВАЯ ОРГАНИЗАЦИЯ ЖИЗНИ

ОБЩИЕ ПРИЗНАКИ ЖИВЫХ СИСТЕМ

Клеточное строение (исключение — вирусы).

Наследственность — способность организмов передавать свои признаки из поколения в поколение.

Изменчивость — способность организмов приобретать новые признаки.

Раздражимость — ответная реакция на внешнее воздействие.

Общность химического состава — все живые организмы на 98 % состоят из четырёх элементов: углерода, азота, кислорода и водорода.

Обмен веществ и энергии — совокупность процессов поступления веществ в организм и использования их для выработки энергии, а также выделение конечных продуктов в окружающую среду.

Рост — увеличение массы, обусловленное развитием организма.

Самовоспроизведение — способность к воспроизведению себе подобных.

Саморегуляция — постоянство структурной организации и химического состава внутренней среды.

Развитие — приобретение новых индивидуальных свойств организма.

Открытость системы — способность существовать при условии постоянного обмена веществ и энергии с окружающей средой.

Дискретность — любая система состоит из отдельных, но взаимодействующих между собой частей, образующих функциональное единство.

(a)

⊚

Биологическая система — живая структура, существующая в определённой для неё среде обитания, обладающая способностью обмена веществ и энергии, а также защитой обмена и копирования информации, которая определяет её функции и возможности.

УРОВНИ ОРГАНИЗАЦИИ ЖИЗНИ

Молекулярный

Структурный элемент: атомы и молекулы.

Биологическая система: органоиды.

Процессы уровня: реализация и передача наследственной информации, биосинтез, физико-химические реакции и др.

Клеточный

Структурный элемент: органоиды.

Биологическая система: клетка (одноклеточный организм).

Процессы уровня: воспроизведение, обмен веществ и энергии, регуляция химических реакций.

Организменный

Структурный элемент: одноклеточный организм, органы и их системы в многоклеточном организме.

Биологическая система: одноклеточный или многоклеточный организм.

Процессы уровня: питание, дыхание, раздражимость, выделение, размножение, рост и др.

Биосферный

Структурный элемент: биогеоценозы (экосистемы).

Биологическая система: биосфера.

Процессы уровня: взаимодействие живого и неживого вещества планеты, круговорот веществ и энергии, хозяйственная и этнокультурная деятельность человека.

Биогеоценотический

Структурный элемент: популяции и виды, взаимодействующие между собой в определённой среде.

Биологическая система: биогеоценозы (экосистемы).

Процессы уровня: саморегуляция, самовоспроизводство и саморазвитие биогеоценозов.

Популяционно-видовой

Структурный элемент: родственные особи, объединённые в популяцию, вид.

Биологическая система: популяции.

Процессы уровня: действие движущих сил эволюции, изменение генофонда популяции, видообразование.

KNETKA KAK SNONOTHYECKAS CHCTEMA

СОВРЕМЕННАЯ КЛЕТОЧНАЯ ТЕОРИЯ

Клетка — элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов), обладающая всеми свойствами живого.

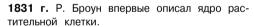
ЭТАПЫ ОТКРЫТИЯ И ИЗУЧЕНИЯ КЛЕТКИ

1665 г. Р. Гук на срезах пробкового дерева обнаружил крошечные ячейки, которые назвал клетками.

1674 г. А. ван Левенгук под микроскопом в капле воды наблюдал движущиеся живые организмы (инфузории, амёбы, бактерии).

1675 г. М. Мальпиги (*слева*), 1681 г. Н. Грю (*справа*) подтвердили клеточное строение растений.

1802—1808 гг. Ш. Ф. Мирбель установил, что все растения состоят из тканей, образованных клетками.


1809 г. Ж. Б. Ламарк определил клеточное строение животных организмов.

1825 г. Я. Пуркине открыл ядро яйцеклетки птиц.

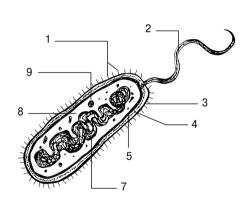
1839 г. Я. Пуркине ввёл термин «протоплазма».

1839 г. Т. Шванном (*слева*) и М. Шлейденом (*справа*) сформирована клеточная теория строения организмов, которая включала три положения.

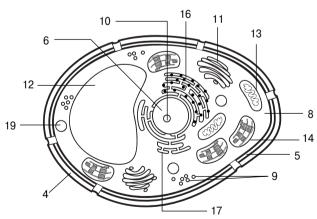
1858 г. Р. Вирхов дополнил клеточную теорию ещё одним положением.

1878 г. И. Д. Чистяков открыл митоз в растительных клетках.

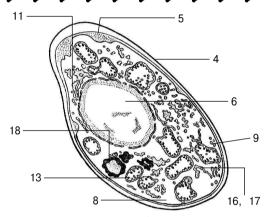
1878 г. В. Флемминг обнаружил митоз у животных.

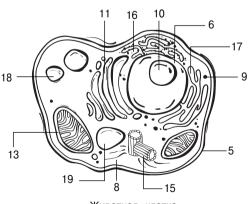

1882 г. В. Флемминг наблюдал мейоз в животных клетках.

1888 г. Э. Страсбургер наблюдал мейоз в растительных клетках.



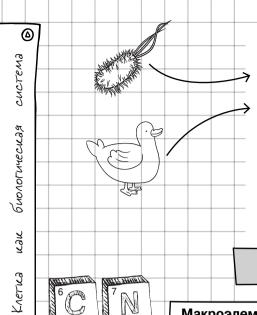
- Клетки всех организмов построены по единому принципу, сходны по химическому составу, основным проявлениям жизнедеятельности.
- Каждая новая клетка образуется в результате деления исходной (материнской).
- В многоклеточных организмах клетки специализированы ПО выполняемым функциям и образуют ткани. Из тканей состоят органы и системы органов.
- Каждая клетка многоклеточного организма содержит весь его геном, но отличается по уровню работы отдельных генов, что приводит к их разнообразию.


МНОГООБРАЗИЕ КЛЕТОК


Бактериальная клетка

Растительная клетка

Грибная клетка


Животная клетка

Структуры клеток:

1 — пили (фимбрии), 2 — жгутик, 3 — капсула, 4 — клеточная стенка, 5 — плазматическая мембрана, 6 — ядро, 7 — нуклеоид, 8 — цитоплазма, 9 — рибосомы, 10 — ядрышко, 11 — аппарат Гольджи, 12 — вакуоль, 13 — митохондрии, 14 — хлоропласт, 15 — центриоли, 16 — гранулированный эндоплазматический ретикулум, 17 — гладкий эндоплазматический ретикулум, 18 — жировые включения, 19 — лизосома

(a)

(b)

Все клеточные формы жизни на Земле можно разделить на два надцарства (критерий — строение компонентов клетки):

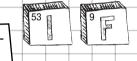
- ◆ прокариоты (доядерные) не имеют оформленного клеточного ядра (бактерии, археи);
- ♦ эукариоты (ядерные) имеют оформленное клеточное ядро (растения, животные, грибы).

ХИМИЧЕСКИЙ СОСТАВ КЛЕТКИ

В клетках обнаружено более 90 химических элементов. Эти элементы входят в состав неорганических и органических веществ живых организмов.

ГРУППЫ ЭЛЕМЕНТОВ

Макроэлементы


пементы / / Микроэлементы

Магний, натрий, калий, железо, кальций, сера, фосфор, хлор.

Кислород, углерод, водород, азот.

Ультрамикроэлементы

Цинк, медь, йод, хром, фтор, марганец, кобальт, никель, золото, серебро и др.

НЕОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Неорганические вещества — вода и минеральные соли. Содержание воды колеблется в пределах 40—90 % и зависит

от физиологической активности клетки.

ВЕЩЕСТВА (к воде)

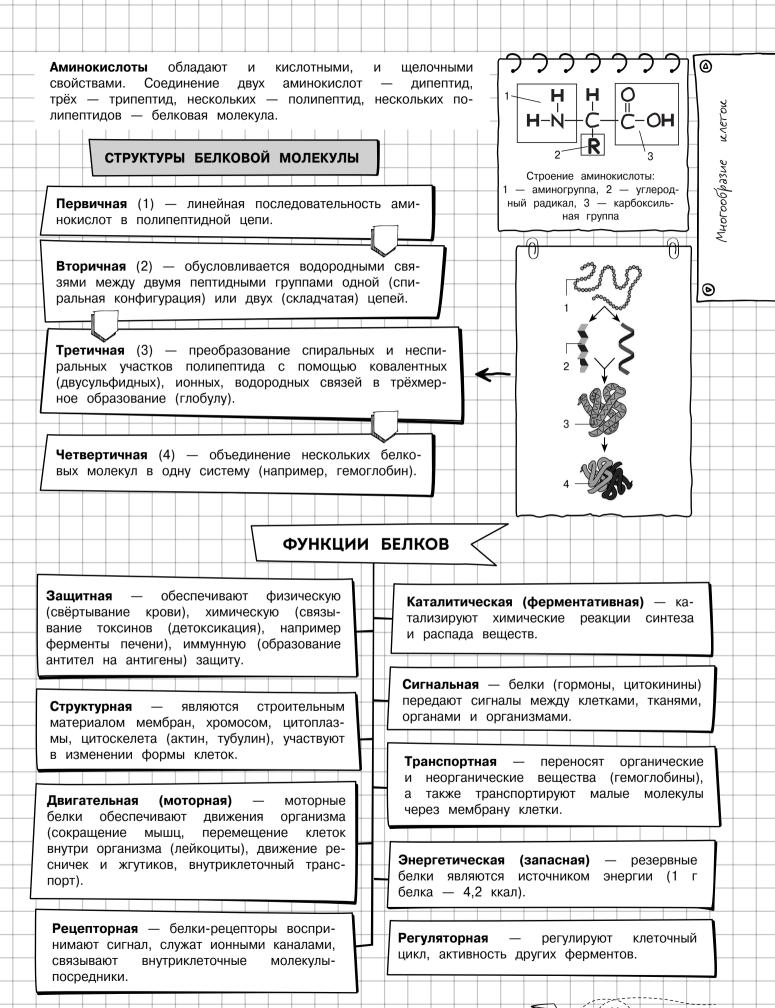
Гидрофильные (растворимые: минеральные соли, щёлочи, кислоты, простые углеводы, спирты и др.).

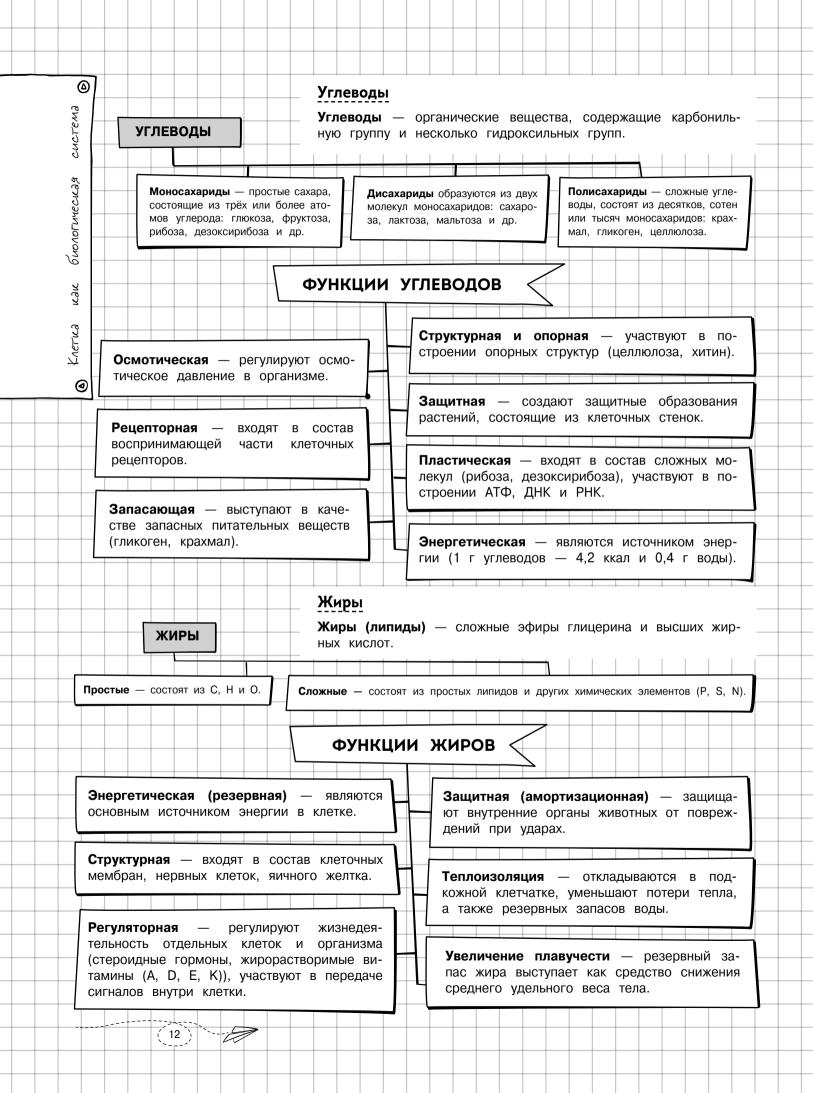
Гидрофобные (нерастворимые: крахмал, жиры, целлюлоза и др.).

Катионы влияют на раздражимость, проницаемость мембран клеток, уровень воды в тканях и обеспечивают буферные свойства.

@

Процесс разрушения структуры белка под влиянием химических и физических факторов — денатурация.


Минеральные соли поддерживают кислотно-щелочное равновесие и тургор клеточных оболочек, влияют на возбудимость нервной системы и мышечных тканей, активируют ферменты. Они представлены солями, которые диссоциируют на анионы и катионы.

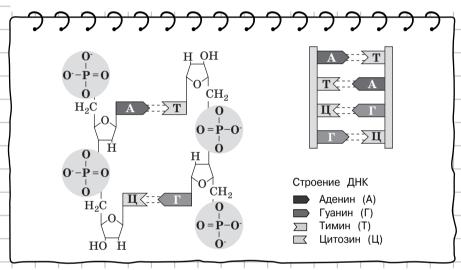

ОРГАНИЧЕСКИЕ ВЕЩЕСТВА

Органические вещества — класс химических соединений, в состав которых входит углерод (белки, углеводы, жиры, нуклеиновые кислоты, АТФ).

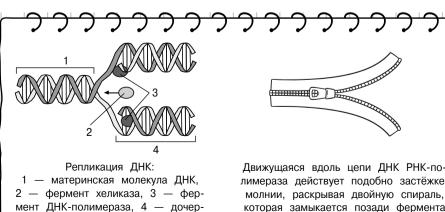
Белки

Белки состоят из остатков аминокислот и делятся на **простые** (альбумины, глобулины, гистоны) и **сложные** (белки, объединённые с углеводами, — гликопротеиды, с жирами — липопротеиды, с нуклеиновыми кислотами — нуклеопротеиды).

Нуклеиновые кислоты


Нуклеиновые кислоты — биологические полимеры (главная функция — обеспечение хранения и передачи наследственной информации), мономерами которых являются нуклеотиды.

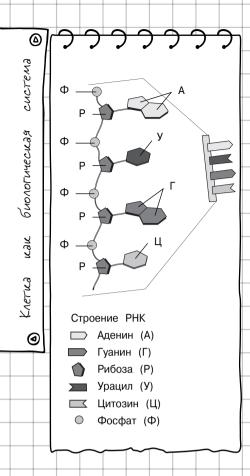
Нуклеотид — комплекс, состоящий из азотистого основания, углевода (пентозы) и остатка фосфорной кислоты.


В зависимости от вида пятиуглеродного сахара в составе нуклеотидов различают два типа нуклеиновых кислот: дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК).

Двухцепочечная молекула ДНК хранит генетическую информацию в клетке (содержится в ядре клетки, матриксе митохондрий и пластид) и осуществляет её передачу следующему поколению.

Строение ДНК основано на правилах комплементарности и антипараллельности.

Репликация ДНК — процесс синтеза дочерней молекулы ДНК на матрице родительской. Молекула ДНК разделяется на моноспирали (разрыв водородных связей между азотистыми основаниями двух цепей), после чего к каждому основанию, потерявшему партнёра, присоединяется комплементарное основание. Дочерние молекулы получаются точными копиями родительской. При этом одна цепь остаётся от материнской ДНК, а вторая синтезируется заново. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение.



няя молекула ДНК

Движущаяся вдоль цепи ДНК РНК-полимераза действует подобно застёжкемолнии, раскрывая двойную спираль, которая замыкается позади фермента по мере его продвижения

Терминация

Рибоза, в отличие от дезоксирибозы, имеет дополнительную ОН-группу (гидроксильную). Это позволяет РНК легче вступать в химические реакции.

РНК — одноцепочечная молекула нуклеиновой кислоты, которая синтезируется на молекуле ДНК и является комплементарной копией участка одной из цепочек ДНК.

Все виды РНК синтезируются на определённых участках одной из цепей ДНК. Такой синтез называется **матричным**, поскольку молекула ДНК — матрица (образец, модель) для синтеза молекул РНК. Все виды РНК синтезируются с помощью фермента РНК-полимеразы. Она может быть ДНК- и РНК-зависимой, то есть катализировать синтез как на ДНК-, так и на РНК-матрице. Синтез основан на комплементарности оснований и антипараллельности направления чтения генетического кода.

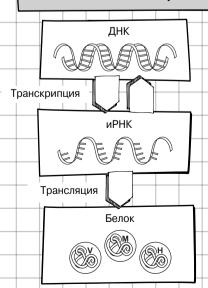
виды РНК

Информационная (иРНК)

Осуществляет непосредственную передачу кода ДНК для синтеза белков, при этом каждый белок кодируется специфической иРНК.

Рибосомальная (рРНК)

Входит в состав рибосом, выполняя структурную функцию, также участвует в формировании активного центра рибосомы.



Транспортная (тРНК)

Присоединяет и переносит определённую аминокислоту к рибосомам.

ЭТАПЫ РЕАЛИЗАЦИИ

РЕАЛИЗАЦИЯ НАСЛЕДСТВЕННОЙ ИНФОРМАЦИИ

Транскрипция осуществляется в ядре и представляет собой списывание информации о структуре белковой молекулы с ДНК на иРНК по правилу комплементарности. Фермент РНК-полимераза расщепляет двойную цепь ДНК и на одной из цепей синтезирует молекулу про-иРНК. С помощью специальных ферментов про-иРНК превращается в активную форму иРНК, которая из ядра поступает в цитоплазму клетки. К иРНК здесь присоединяется рибосома. Одновременно в цитоплазме с помощью ферментов активируется тРНК, на вершине которой находится триплет, соответствующий по коду определённой аминокислоте (антикодон), а на основании тРНК крепится данная аминокислота. К рибосомам аминокислоту доставляет тРНК.

Трансляция (передача) — процесс синтеза белка из аминокислот на рибосомах. По правилу комплементарности ан-